15 research outputs found

    Social preferences and sales performance

    Get PDF
    We use an incentivized experimental game to uncover heterogeneity in social preferences among salespeople in a large Austrian retail chain. Our results show that the majority of agents take the welfare of others into account but a significant fraction reveal selfish behavior. Matching individual behavior in the game with firm data on sales performance shows that agents with social preferences achieve a significantly higher revenue per customer. However, at the same time, they achieve fewer sales per day. Both effects offset each other, so that the overall association with total sales revenue becomes insignificant. Our findings highlight the nuanced role of selfish versus social preferences in sales contexts with important implications for economic research

    Services approach & overview general tools and resources

    Get PDF
    The contents of this deliverable are split into three groups. Following an introduction, a concept and vision is sketched on how to establish the necessary natural language processing (NLP) services including the integration of existing resources. Therefore, an overview on the state-of-the-art is given, incorporating technologies developed by the consortium partners and beyond, followed by the service approach and a practical example. Second, a concept and vision on how to create interoperability for the envisioned learning tools to allow for a quick and painless integration into existing learning environment(s) is elaborated. Third, generic paradigms and guidelines for service integration are provided.The work on this publication has been sponsored by the LTfLL STREP that is funded by the European Commission's 7th Framework Programme. Contract 212578 [http://www.ltfll-project.org

    Discussion on Sustainable Water Technologies for Peri-Urban Areas of Mexico City: Balancing Urbanization and Environmental Conservation

    No full text
    Often centralized water supply, sanitation and solid waste services struggle to keep up with the rapid expansion of urban areas. The peri-urban areas are at the forefront of this expansion and it is here where decentralized technologies are increasingly being implemented. The introduction of decentralized technologies allows for the development of new opportunities that enable the recovery and reuse of resources in the form of water, nutrients and energy. This resource-oriented management of water, nutrients and energy requires a sustainable system aimed at low resource use and high recovery and reuse rates. Instead of investigating each sector separately, as has been traditionally done, this article proposes and discusses a concept that seeks to combine the in- and outflows of the different sectors, reusing water and other liberated resources where possible. This paper shows and demonstrates examples of different types of sustainable technologies that can be implemented in the peri-urban areas of Mexico City [rainwater harvesting, EcoSan and <em>biofiltros </em>(small constructed wetlands), and (vermi-)composting]. An innovative participatory planning method, combining scenario development with a participatory planning workshop with key stakeholders, was applied and resulted in three concept scenarios. Specific technologies were then selected for each concept scenario that the technical feasibility and applicability was assessed. Following this, the resulting resource flows (nutrients, water and energy) were determined and analyzed. The results show that decentralized technologies not only have the potential to deliver adequate water supply, sanitation and solid waste services in peri-urban areas and lessen environmental pollution, but also can recover significant amounts of resources thereby saving costs and providing valuable inputs in, for instance, the agricultural sector. Social acceptance of the technologies and institutional cooperation, however, is key for successful implementation

    Discussion on Sustainable Water Technologies for Peri-Urban Areas of Mexico City: Balancing Urbanization and Environmental Conservation

    No full text
    Often centralized water supply, sanitation and solid waste services struggle to keep up with the rapid expansion of urban areas. The peri-urban areas are at the forefront of this expansion and it is here where decentralized technologies are increasingly being implemented. The introduction of decentralized technologies allows for the development of new opportunities that enable the recovery and reuse of resources in the form of water, nutrients and energy. This resource-oriented management of water, nutrients and energy requires a sustainable system aimed at low resource use and high recovery and reuse rates. Instead of investigating each sector separately, as has been traditionally done, this article proposes and discusses a concept that seeks to combine the in- and outflows of the different sectors, reusing water and other liberated resources where possible. This paper shows and demonstrates examples of different types of sustainable technologies that can be implemented in the peri-urban areas of Mexico City [rainwater harvesting, EcoSan and biofiltros (small constructed wetlands), and (vermi-)composting]. An innovative participatory planning method, combining scenario development with a participatory planning workshop with key stakeholders, was applied and resulted in three concept scenarios. Specific technologies were then selected for each concept scenario that the technical feasibility and applicability was assessed. Following this, the resulting resource flows (nutrients, water and energy) were determined and analyzed. The results show that decentralized technologies not only have the potential to deliver adequate water supply, sanitation and solid waste services in peri-urban areas and lessen environmental pollution, but also can recover significant amounts of resources thereby saving costs and providing valuable inputs in, for instance, the agricultural sector. Social acceptance of the technologies and institutional cooperation, however, is key for successful implementation

    The Austrian biodiversity monitoring “ÖBM Kulturlandschaft” and a unified biodiversity number for trend assessments

    No full text
    The Austrian biodiversity monitoring ÖBM-Kulturlandschaft has a focus on habitat and species diversity in Austrian cultural landscapes (including alpine pastures) and started in the year 2017. The stratified random selection of the sampling sites is based on the 1 km² grid of Statistics Austria. A minimum of 50% of agricultural area within the 1 km² was the limit for considering a grid cell; 100 nested sampling plots are arranged hierarchically (i) remote sensing based landscape survey: 3 x 3 km² - landscape plots, (ii) habitat mapping: 625 m x 625 m test areas; and (iii) per test area: 10 test circles for surveys of vascular plants, grasshoppers and butterflies. A rolling (staggered) survey is planned: in the first year of the survey, half of the 100 sampling plots have been covered, in the second survey year the remaining half of the sampling plots. The repetition of surveys should take place every three to five years. Remote sensing data will be applied within the framework of ÖBM-Kulturlandschaft at three different levels: (i) phenological characterizations of the habitat types within the 625 m x 625 m sampling plots, (ii) detection of changes in ecosystem functions (e.g. NDVI) and ecosystem structure (e.g. land cover) around the sampling plots at 3x3 km² and (iii) nation-wide analysis of land cover change with the COPERNICUS products available for the entire EU. The recording of habitat types is based on the red lists published by the Environment Agency Austria. Regarding organismic groups, the survey methods are closely aligned with those applied in the monitoring project Biodiversity-Nature-Safety (BINATS; Pascher et al. 2011) that focusses on maize and oilseed rape cultivation areas and it is planned to merge data from BINATS and ÖBM-Kulturlandschaft to provide overall results for the Austrian cultural landscapes. Vascular plants, grasshoppers and butterflies were chosen mainly for being optimal surrogates for overall biodiversity, suppliers of ecosystem services, and/or due to practical advantages in surveying. Preliminary results from 2017 are that 69 species of grasshoppers (49% of Austrian species; n = 48 test areas) and 103 species of butterflies (48%, n=49) were detected. Average species richness was 10.6±4.6 for grasshoppers and 10.5±4.7 for butterflies per test area, and 3.9±2.9 for grasshoppers and 2.8±2.2 for butterflies per test circles. A novel method for biodiversity accounting will be used to summarise the population change results of all species obtained during monitoring. With this method, measured population change results are weighted by the species’ Red List category at the national and international scale and its dependence on the monitoring area (determined by habitat requirements and total range). References: K Pascher et al (2011) Setup, efforts and practical experiences of a monitoring program for genetically modified plants - an Austrian case study for oilseed rape and maize. Env Sci Eur 23:12peerReviewe
    corecore